Objective information-theoretic algorithm for detecting brainstem-evoked responses to complex stimuli.
نویسنده
چکیده
BACKGROUND The scalp-recorded frequency-following response (FFR), an auditory-evoked potential with putative neural generators in the rostral brainstem, provides a robust representation of the neurophysiologic encoding of complex stimuli. The FFR is rapidly becoming a valuable tool for understanding the neural transcription of speech and music, language-related processing disorders, and brain plasticity at initial stages of the auditory pathway. Despite its potential clinical and empirical utility, determining the presence of a response is still dependent on the subjective interpretation by an experimenter/clinician. PURPOSE The purpose of the present work was to develop and validate a fully objective procedure for the automatic detection of FFRs elicited by complex auditory stimuli, including speech. RESEARCH DESIGN Mutual information (MI) was computed between the spectrographic representation of neural FFRs and their evoking acoustic stimuli to quantify the amount of shared time-frequency information between electrophysiologic responses and stimulus acoustics. To remove human subjectivity associated with typical response evaluation, FFRs were first simulated at known signal-to-noise ratios using a computational model of the auditory periphery. The MI at which model FFRs contained +3 dB Signal-to-noise ratio was taken as the criterion threshold (θMI) for the presence of a response. θMI was then applied as a binary classifier on actual neurophysiologic responses recorded previously in human participants (n = 35). Sham recordings, in which no stimulus was presented to participants, allowed us to determine the receiver operating characteristics of the MI metric and the capabilities of the algorithm to segregate true evoked responses from sham recordings. RESULTS RESULTS showed high overall accuracy (93%) in the metric's ability to identify true responses from sham recordings. The metric's overall performance was considerably better than trained human observers who, on average, accurately identified only ∼75% of the true neural responses. Complementary results were found in the metric's receiver operating characteristic test performance characteristics with a sensitivity and specificity of 97% and 85%, respectively. Additionally, MI increased monotonically and was asymptotic with increasing trials (i.e., sweeps) contributing to the averaged FFR and, thus, can be used as a stopping criteria for signal averaging. CONCLUSIONS The present results demonstrate that the mutual information between a complex acoustic stimulus and its corresponding brainstem response can provide a completely objective and robust method for automated FFR detection. Application of the MI metric to evoked potential speech audiometry testing may provide clinicians with a more robust tool to quantitatively evaluate the presence and quality of speech-evoked brainstem responses ultimately minimizing subjective interpretation and human error.
منابع مشابه
Objective Peak-Detection in Complex Auditory Brainstem Response to /ba/, /da/, /ga/: A Novel Technique
Objectives: The result of auditory brainstem response is used worldwide for detecting hearing impairments or hearing aids. This study aimed to introduce the superiority of mathematical innovation algorithm toward subjective evaluation by an audiologist. The automatic algorithm method is encouraged for detecting the waves of Auditory Brainstem Response (ABR), because it can reduce subjective eva...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کاملAuditory processing skills in brainstem level of autistic children: A Review Study
Aims: Autism is a pervasive developmental disorder. Deficit in sensory functions is one of the characteristics of people with autism, and usually these people show abnormality in processing and correct interpretation of auditory information. Also people with Autism show problems in communicating with others. This review article deals with the accurate understanding of Auditory processing skills...
متن کاملAuditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes
Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cr...
متن کاملVestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Academy of Audiology
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2014